Class proximity measures – Dissimilarity-based classification and display of high-dimensional data
نویسندگان
چکیده
منابع مشابه
Class proximity measures - Dissimilarity-based classification and display of high-dimensional data
For two-class problems, we introduce and construct mappings of high-dimensional instances into dissimilarity (distance)-based Class-Proximity Planes. The Class Proximity Projections are extensions of our earlier relative distance plane mapping, and thus provide a more general and unified approach to the simultaneous classification and visualization of many-feature datasets. The mappings display...
متن کاملCombining dissimilarity measures for prototype-based classification
Prototype-based classification, identifying representatives of the data and suitable measures of dissimilarity, has been used successfully for tasks where interpretability of the classification is key. In many practical problems, one object is represented by a collection of different subsets of features, that might require different dissimilarity measures. In this paper we present a technique f...
متن کاملevaluation of dissimilarity measures for image retrieval and classification
in this paper, the performance of 11 different distances for image retrieval and classification, based on color, shape and texture, is evaluated. the precision-recall measure and the correct classification rate of the k-nn classifier are used to evaluate retrieval and classification performances, respectively. the experimental results for a database of 1000 images from 10 different semantic gro...
متن کاملPrototype-Based Classification of Dissimilarity Data
Unlike many black-box algorithms in machine learning, prototype based models offer an intuitive interface to given data sets since prototypes can directly be inspected by experts in the field. Most techniques rely on Euclidean vectors such that their suitability for complex scenarios is limited. Recently, several unsupervised approaches have successfully been extended to general possibly non-Eu...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Informatics
سال: 2011
ISSN: 1532-0464
DOI: 10.1016/j.jbi.2011.04.004